Sunday, October 29, 2006

ARTIKEL TENTANG ALGAE





Sabtu, 15 Juli 2006


ARTIKEL 1

Krisis BBM, Jarak, dan "Algae"

F Rahardi

Krisis bahan bakar minyak global ikut memukul Indonesia. Alternatif substitusi BBM pun dicari. Dan tanaman jarak sempat menyedot perhatian. Benarkah jarak bisa mengatasi soal BBM? Jangan-jangan kebijakan yang dibuat bisa membuat pemerintah kian tak populer. Mengapa?

Dari tiap hektar kebun jarak pagar (Jatropha curcas), dalam setahun hanya menghasilkan 1.500 liter minyak. Ini lebih baik dibanding biji lobak yang menghasilkan 1.000 liter dan biji kubis (mustard) 1.300 liter. Namun, jarak masih kalah unggul dari kelapa (2.200 liter), sawit (Crude Palm Oil/CPO) (5.800 liter), dan terlebih lagi dari algae yang produktivitasnya mencapai 40.000 hingga 120.000 liter per hektar per tahun. Produktivitas algae benar-benar luar biasa dibanding CPO sekalipun.

Ketika Presiden Susilo Bambang Yudhoyono (SBY) tetirah di resor Losari, Jawa Tengah, memang ada laporan tentang jarak, metanol (dari tetes tebu), dan CPO. Tetapi perhatian SBY dan pers terfokus ke jarak. Alam pikiran bawah sadar kita beranggapan, ada tumbuhan ajaib yang bisa mengatasi masalah dan bisa memakmurkan rakyat Indonesia yang terus dirundung bencana.

Dalam pertemuan informal dengan para menteri di Losari itu, tidak ada sedikit pun info tentang algae. Hingga media, termasuk Kompas, terkecoh mempromosikan jarak pagar sebagai komoditas yang bisa mengatasi krisis BBM sekaligus memakmurkan petani Indonesia. Sejak Kompas memuat informasi tentang jarak (11-12/7/2006), banyak pertanyaan ihwal komoditas itu.

Plus minus jarak

Meski produktivitasnya kalah dari kelapa dan CPO, jarak tetap memiliki keunggulan sebab budidaya dan pascapanennya amat sederhana hingga bisa dilakukan dalam skala rumah tangga. Jarak juga bisa digunakan untuk bahan bakar sehingga tidak bersaing sebagai produk pangan, seperti kelapa dan CPO. Jarak memiliki keunggulan, dapat dikembangkan di kawasan kering dan tandus, misalnya di Provinsi NTT.

Kelemahan jarak adalah produktivitasnya. Produktivitasnya justru menurun jika dibudidayakan di lahan subur, di kawasan basah. Jika jarak ditanam di Pulau Jawa, daunnya akan rimbun tapi buahnya sedikit. Selain itu, harga biodiesel dari jarak harus lebih murah dari solar. Jika harga solar Rp 4.300 per liter, minyak jarak hanya bisa dijual Rp 4.000 di tingkat konsumen atau Rp 3.500 di tingkat produsen. Dengan produktivitas 1.500 liter per hektar per tahun, pendapatan bruto agroindustri jarak Rp 5.250.000 per hektar per tahun.

Nilai rata-rata lahan di Jawa sudah di atas Rp 10.000 per meter persegi atau Rp 100.000.000 per hektar. Dengan suku bunga deposito lima persen per tahun, jika lahan dijual dan uangnya dideposito, maka hasil bersihnya Rp 5.000.000 per tahun tanpa harus kerja dan menanggung risiko.

Masih banyak komoditas yang hasilnya lebih tinggi dari jarak. Komoditas pangan atau hortikultura, dengan masa panen 3-4 bulan (4-3 kali panen per tahun), hasil lahan itu pasti lebih tinggi.

Informasi inilah yang disembunyikan para promotor jarak. Rakyat, bupati, gubernur, menteri, bahkan presiden, tidak diberi tahu bahwa pendapatan bruto agroindustri jarak hanya Rp 5.250.000 per hektar per tahun.

Pendapatan ini tidak feasible untuk disodorkan ke rakyat. Sebab bagi mereka, lebih menguntungkan memproduksi CPO atau gula tebu dengan hasil sampingan biodiesel dan metanol.

Keunggulan "Algae"

Masyarakat awam biasa menyebut algae sebagai lumut. Tumbuhan purba ini sering mengganggu akuarium dan kolam renang. Itu adalah algae bersel banyak. Algae yang rendemen minyaknya tinggi dan pertumbuhannya cepat adalah tumbuhan bersel satu, terutama yang hidup di laut. Algae bersel satu ini tidak berakar dan tidak berdaun, tetapi berklorofil. Ia juga lazim disebut microalgae, phytoplankton, microphytes, planktonic algae, atau cyanobacteria. Produktivitas algae dalam menghasilkan biodiesel bisa tinggi karena beberapa faktor.

Algae amat efektif dalam mengubah nutrisi dan karbon dioksida (CO>sub<2>res<>res<) dari air, dengan bantuan sinar matahari hingga menjadi energi. Proses penyerapan nutrisi, CO>sub<2>res<>res<, dan sinar matahari pada algae berlangsung sederhana, cepat, dan murah. Beda dengan proses serupa pada tanaman tingkat tinggi.

Karena bisa hidup di air laut maupun tawar, budidaya algae bisa dilakukan dengan cara terbuka dan ekstensif di perairan laut yang dikelilingi karang (atol), danau, kolam, atau kanal. Budidaya algae juga bisa dilakukan secara tertutup dengan menaungi kolam, kanal, atau bak menggunakan plastik (greenhouse), dan mengatur suplai nutrisi. Cara tertutup yang lebih efisien adalah dengan photobioreaktor. Sistem ini merupakan pengembangan tangki bioreaktor biasa yang diberi tambahan sumber sinar buatan.

Kelebihan algae dibanding bahan nabati lain adalah pengambilan minyaknya tanpa perlu penggilingan. Minyak algae (alga oil) bisa langsung diekstrak dengan bantuan zat pelarut, enzim, pengempaan (pemerasan), ekstraksi CO2, ekstraksi ultrasonik, dan osmotic shock. Panen algae bisa dilakukan dengan aneka cara, mulai dari penyaringan mikro, sentrifugal (pemutaran), dan flokulasi (flocculation). Flokulasi adalah pemisahan algae dari air dengan bantuan zat kimia.

Keunggulan Indonesia

Budidaya microalgae secara massal sudah dilakukan antara lain di Danau Texcoco di bagian tengah Meksiko. Jenis algae yang dibudidayakan adalah Spirulina (Arthospira platensis), jenis algae hijau/biru (cyanobacteria). Budidaya algae di Meksiko ini bukan untuk memproduksi biodisel, tetapi sebagai bahan pangan. Dibanding Meksiko, Indonesia lebih unggul karena perairan lautnya lebih luas dari daratan. Budidaya algae secara ekstensif di laut lebih murah dibanding di darat.

Algae tidak hanya berpotensi menghasilkan biodiesel. Komoditas ini bisa menjadi bahan pangan, pakan ternak, biomassa yang langsung bisa dibakar, untuk industri farmasi, plastik, metanol, guna mengatasi pencemaran lingkungan. Sayang, komoditas hebat ini suaranya "nyaris tak terdengar". Yang gencar dipublikasikan justru jarak, yang produktivitasnya rendah.

Keputusan SBY untuk mengembangkan jarak mestinya tidak terjadi jika saja diberikan informasi lengkap tentang potensi bahan nabati, untuk biodiesel dan metanol. Mulai dari jarak, kelapa, CPO, singkong, ubi jalar, dan algae. Komoditas ini merupakan masa depan pengganti BBM. Indonesia dengan laut tropisnya yang luas berpotensi memproduksi BBM dari algae.

F Rahardi Penyair, Wartawan.


Design By KCM
Copyright © 2002 Harian KOMPAS




--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


ARTIKEL 2


Alga Laut sebagai Biotarget Industri

Oleh Sinly Evan Putra
Asisten II Sekretaris Jenderal Ikatan Himpunan Mahasiswa Kimia Indonesia



Indonesia telah dikenal luas sebagai negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km. Didalam lautan terdapat bermacam-macam mahluk hidup baik berupa tumbuhan air maupun hewan air. Salah satu mahluk hidup yang tumbuh dan berkembang di laut adalah alga.

Ditinjau secara biologi, alga merupakan kelompok tumbuhan yang berklorofil yang terdiri dari satu atau banyak sel dan berbentuk koloni. Didalam alga terkandung bahan-bahan organik seperti polisakarida, hormon, vitamin, mineral dan juga senyawa bioaktif. Sejauh ini, pemanfaatan alga sebagai komoditi perdagangan atau bahan baku industri masih relatif kecil jika dibandingkan dengan keanekaragaman jenis alga yang ada di Indonesia. Padahal komponen kimiawi yang terdapat dalam alga sangat bermanfaat bagi bahan baku industri makanan, kosmetik, farmasi dan lain-lain.

Berbagai jenis alga seperti Griffithsia, Ulva, Enteromorpna, Gracilaria, Euchema, dan Kappaphycus telah dikenal luas sebagai sumber makanan seperti salad rumput laut atau sumber potensial karagenan yang dibutuhkan oleh industri gel. Begitupun dengan Sargassum, Chlorela/Nannochloropsis yang telah dimanfaatkan sebagai adsorben logam berat, Osmundaria, Hypnea, dan Gelidium sebagai sumber senyawa bioaktif, Laminariales atau Kelp dan Sargassum muticum yang mengandung senyawa alginat yang berguna dalam industri farmasi. Pemanfaatan berbagai jenis alga yang lain adalah sebagai penghasil bioetanol dan biodiesel ataupun sebagai pupuk organik.

Alga Laut sebagai Sumber Makanan

Kandungan bahan-bahan organik yang terdapat dalam alga merupakan sumber mineral dan vitamin untuk agar-agar, salad rumput laut maupun agarose. Agarose merupakan jenis agar yang digunakan dalam percobaan dan penelitian dibidang bioteknologi dan mikrobiologi.
Potensi alga sebagai sumber makanan (terutama rumput laut), di Indonesia telah dimanfaatkan secara komersial dan secara intensif telah dibudidayakan terutama dengan tehnik polikultur (kombinasi ikan dan rumput laut).

Alga Laut sebagai Adsorben Logam Berat

Pemanfaatan sistem adsorpsi untuk pengambilan logam-logam berat dari perairan telah banyak dilakukan. Beberapa spesies alga telah ditemukan mempunyai kemampuan yang cukup tinggi untuk mengadsorpsi ion-ion logam, baik dalam keadaan hidup maupun dalam bentuk sel mati (biomassa). Berbagai penelitian telah membuktikan bahwa gugus fungsi yang terdapat dalam alga mampu melakukan pengikatan dengan ion logam. Gugus fungsi tersebut terutama adalah gugus karboksil, hidroksil, sulfudril, amino, iomodazol, sulfat, dan sulfonat yang terdapat didalam dinding sel dalam sitoplasma.

Menurut Harris dan Ramelow (1990), kemampuan alga dalam menyerap ion-ion logam sangat dibatasi oleh beberapa kelemahan seperti ukurannya yang sangat kecil, berat jenisnya yang rendah dan mudah rusak karena degradasi oleh mikroorganisme lain. Untuk mengatasi kelemahan tersebut berbagai upaya dilakukan, diantaranya dengan mengimmobilisasi biomassanya. Immobilisasi biomassa dapat dilakukan dengan mengunakan (1) Matrik polimer seperti polietilena glikol, akrilat, (2) oksida (oxides) seperti alumina, silika, (3) campuran oksida (mixed oxides) seperti kristal aluminasilikat, asam polihetero, dan (4) Karbon.

Berbagai mekanisme yang berbeda telah dipostulasikan untuk ikatan antara logam dengan alga/biomassa seperti pertukaran ion, pembentukan kompleks koordinasi, penyerapan secara fisik, dan pengendapan mikro. Tetapi hasil penelitian akhir-akhir ini menunjukan bahwa mekanisme pertukaran ion adalah yang lebih dominan. Hal ini dimungkinkan karena adanya gugus aktif dari alga/biomassa seperti karboksil, sulfat, sulfonat dan amina yang akan berikatan dengan ion logam.

Alga Laut sebagai Sumber Senyawa Bioaktif

Alga hijau, alga merah ataupun alga coklat merupakan sumber potensial senyawa bioaktif yang sangat bermanfaat bagi pengembangan (1) industri farmasi seperti sebagai anti bakteri, anti tumor, anti kanker atau sebagai reversal agent dan (2) industri agrokimia terutama untuk antifeedant, fungisida dan herbisida.
Kemampuan alga untuk memproduksi metabolit sekunder terhalogenasi yang bersifat sebagai senyawa bioaktif dimungkinkan terjadi, karena kondisi lingkungan hidup alga yang ekstrem seperti salinitas yang tinggi atau akan digunakan untuk mempertahankan diri dari ancaman predator. Dalam dekade terakhir ini, berbagai variasi struktur senyawa bioaktif yang sangat unik dari isolat alga merah telah berhasil diisolasi. Namun pemanfaatan sumber bahan bioaktif dari alga belum banyak dilakukan. Berdasarkan proses biosintesisnya, alga laut kaya akan senyawa turunan dari oksidasi asam lemak yang disebut oxylipin. Melalui senyawa ini berbagai jenis senyawa metabolit sekunder diproduksi.

Alga Laut sebagai Sumber Senyawa Alginat

Alginat merupakan konstituen dari dinding sel pada alga yang banyak dijumpai pada alga coklat (Phaeophycota). Senyawa ini merupakan heteropolisakarida dari hasil pembentukan rantai monomer mannuronic acid dan gulunoric acid. Kandungan alginat dalam alga tergantung pada jenis alganya. Kandungan terbesar alginat (30-40 % berat kering) dapat diperoleh dari jenis Laminariales sedangkan Sargassum Muticum, hanya mengandung 16-18 % berat kering.


Pemanfaatan senyawa alginat didunia industri telah banyak dilakukan seperti natrium alginat dimanfaatkan oleh industri tektil untuk memperbaiki dan meningkatkan kualitas bahan industri, kalsium alginat digunakan dalam pembuatan obat-obatan. Senyawa alginat juga banyak digunakan dalam produk susu dan makanan yang dibekukan untuk mencegah pembentukan kristal es. Dalam industri farmasi, alginat digunakan sebagai bahan pembuatan pelapis kapsul dan tablet. Alginat juga digunakan dalam pembuatan bahan biomaterial untuk tehnik pengobatan seperti micro-encapsulation dan cell transplantation.

Alga Laut sebagai Penghasil Bioetanol dan Biodiesel

Meskipun masih dalam tahap riset yang mendalam, potensi alga laut sebagai penghasil bioetanol dan biodiesel sangat menjanjikan dimasa mendatang. Negara-negara maju seperti Amerika Serikat, Jepang dan Kanada mentargetkan mulai tahun 2025 bahan bakar hayati (biofuel) bisa diproduksi dari budidaya cepat alga mikro yang tumbuh diperairan tawar/asin. Keuntungan lebih yang dapat diperoleh adalah tak butuh traktor seperti didarat, tanpa penyemaian benih, gas CO2 yang dihasilkan dapat dimanfaatkan sebagai bahan bakar dan panen yang terus-terusan (continuous) yang dikarenakan waktu tanam alga hanya 1 minggu.

Alga Laut sebagai Pupuk Organik


Dikarenakan kandungan kimiawi yang terdapat dalam alga laut merupakan nutrien yang sangat penting bagi semua mahluk hidup termasuk tumbuh-tumbuhan, maka alga laut dapat dimanfaatkan sebagai sumber alternatif penganti pupuk-pupuk pertanian yang mengandung bahan kimia sintesis.

Alga dapat digunakan sebagai pupuk organik karena mengandung bahan-bahan mineral seperti potasium dan hormon seperti auxin dan sytokinin yang dapat meningkatkan daya tumbuh tanaman untuk tumbuh, berbunga dan berbuah. Pemanfaatan alga sebagai pupuk organik ditunjang pula oleh adanya sifat hydrocolloids pada alga laut yang dapat dimanfaatkan untuk penyerapan air (daya serap tinggi) dan menjadi substrat yang baik untuk mikroorganisme tanah.

Penutup

Indonesia adalah negara yang mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km. Disepanjang garis pantai, tumbuh dan berkembang berbagai jenis alga laut yang berpotensi sebagai biotarget industri. Berbagai riset mutlak dilakukan untuk pemanfaatan secara optimal kekayaan hayati ini secara berkelanjutan. Riset-riset kimiawan terutama dituntut untuk mencari bahan baku industri, senyawa bioaktif, pengembangan produk-produk turunan berbasis alga, dan mempelajari misteri dan keunikan-keunikan alga dalam hubungannya sebagai bagian dari ekosistem.

Daftar Pustaka

  • Harris dan Ramelow. 1990. Binding of Metal Ions by Particulate
    Quadricauda. Environ. Sci. 627-652
  • Putra, Sinly Evan. 2006. Tinjauan Kinetika dan Termodinamika Proses
    Adsorpsi Ion Logam Pb, Cd, dan Cu oleh Biomassa Alga Nannochloropsis sp. Yang DiImmobilisasi Polietilamina-Glutaraldehid. Laporan Penelitian. Universitas Lampung. Bandar Lampung
  • Setiawan, Andi. 2004. Potensi Pemanfaatan Alga Laut Sebagai Penunjang
    Perkembangan Sektor Industri. Makalah Ilmiah Ketua Jurusan Kimia. Universitas Lampung. Bandar Lampung
  • Soerawidjaja, Tatang H. 2005. Membangun Industri Biodiesel di Indonesia.
    Makalah Ilmiah Forum Biodiesel Indonesia. 16 Desember 2005. Bandung
copyright © 2003 :: chem-is-try.org ::



Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics

Saturday, October 28, 2006

PHOTO ALGAE


Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter GraphicsMyspace Glitter Graphics, MySpace Graphics, Glitter Graphics
1. CHLOROPHYTA

a. Halimeda maxima

Spesifikasi:
Ciri-ciri umum. Morphologi pertumbuhan thalli 9 cm atau lebih warna hijau, kandungan karbonat sedang. Percabangan thalli pada umumnya trichotomus kadang-kadang dichotomus. Segment lebar 4 mm, panjang 5 mm, berbentuk tricula bulat gepeng dan basal segment
Sebaran:
Habitat. Hidup di zona pasang surut bagian tengah hingga subtidal yang berdasar karang. Sering berasosiasi dengan kelompok Halimeda lainnya. Sebaran. Tropis di Pasifik hingga Samodera Hindia. Banyak tersebar diperairan pantai Kepulauan Nusantara.
Potensi:
Manfaat. Manfaat bagi manusia tidak diketahui. Manfaat bagi ekosistem laut adalah sebagai penyedia Ca anorganik. Potensi. Tidak diketahui.


b. Codium decorticartum

Spesifikasi:
Thallus tegak silindris dekat pangkal, agak gepeng pada percabangan, percabangan dichotomus, agak membesar di bagian percabangan, warna hijau pekat. Membentuk rumpun yang rimbun
Sebaran:
Tumbuh pada habitat batu atau pasir di daerah rataan terumbu dengan sebaran agak luas di perairan Indonesia.
Potensi: Belum dimanfaatkan


c. Boergesenia forbessii

Spesifikasi:
Ciri-ciri umum. Thallus berbentuk seperti balon yang mirip gada melengkung dan bagian pangkalnya sangat mengecil tempat melekatkan diri, warna hijau transparan, berdinding tipis dan bagian dalamnya berisi cairan. Tinggi kurang dari 3 cm, diameter bagian
Sebaran:
Habitat. Tumbuh melekat pada karang mati, batuan atau sebagai epifit pada lamun. Pada umumnya hidup di zona pasang surut dan dalam kolam. Sebaran. Asli alge tropis. Mudah ditemukan di seluruh perairan Nusantara.
Potensi:
Manfaat. Tidak ada informasi pemanfaatannya.


d. Caulerpa racemosa v. uvifera.jpg

Spesifikasi:
Thallus memiliki stolon agak berukuran besar dengan perakaran yang pendek dan agak rapat. Ramuli timbul pada stolon dengan interval pendek dan memiliki bulatan-bulatan bertangkai pendek/rimbun. Panjang ramuli mencapai 3 cm.
Sebaran:
Tumbuh pada berbagai substratdi daerah perairan terumbu karang dengan sebaran yang luas.
Potensi:
Dimanfaatkan secara lokal untuk sayuran atau lalapan



5.

Spesifikasi:
Pertumbuhan thalli berkoloni, membentuk silinder, tabung; tinggi mencapai 5 cm. Percabangan pada bagian dasar thallus seperti gelungan berisi 24-28 percabangan. Bagian holdfast terdapat akar serabut sebagai alat penempelan pada substrat.
Sebaran:
Habitat. Banyak ditemukan di zona pasang surut. Menempel pada karang yang diselimuti pasir tipis. Juga sering tumbuh dibalik bongkah batu karang yang relatif besar. Sebaran. Asli alge tropis. Tersebar merata di seluruh perairan Nusantara.
Potensi:
Manfaat. Belum jelas.





DIATOMEAE







































MATERI KULIAH ALGAE

Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics Myspace Glitter Graphics, MySpace Graphics, Glitter Graphics



1. Introduction

A. Although algae have been traditionally regarded as simple plants, they actually span more than one domain, including both Eukaryota and Bacteria (see Blue-green algae), as well as more that one kingdom, including plants and protists, the latter being traditionally considered more animal-like (see protozoa). Thus algae do not represent a single evolutionary direction or line, but a level of organization that may have developed several times in the early history of life on earth.

Algae range from single-cell organisms to multicellular organisms, some with fairly complex differentiated form and (if marine) called seaweeds. All lack leaves, roots, flowers, and other organ structures that characterize higher plants. They are distinguished from other protozoa in that they are photoautotrophic although this is not a hard and fast distinction as some groups contain members that are mixotrophic, deriving energy both from photosynthesis and uptake of organic carbon either by osmotrophy, myzotrophy, or phagotrophy. Some unicellular species rely entirely on external energy sources and have reduced or lost their photosynthetic apparatus.

All algae have photosynthetic machinery ultimately derived from the cyanobacteria, and so produce oxygen as a byproduct of photosynthesis, unlike non-cyanobacterial photosynthetic bacteria. It is estimated that algae produce about 73 to 87 percent of the net global production of oxygen[1]--which is available to humans and other terrestrial animals for respiration.

Algae are usually found in damp places or bodies of water and thus are common in terrestrial as well as aquatic environments. However, terrestrial algae are usually rather inconspicuous and far more common in moist, tropical regions than dry ones, because algae lack vascular tissues and other adaptations to live on land. Algae can endure dryness and other conditions in symbiosis with a fungus as lichen.

The various sorts of algae play significant roles in aquatic ecology. Microscopic forms that live suspended in the water column — called phytoplankton — provide the food base for most marine food chains. In very high densities (so-called algal blooms) these algae may discolor the water and outcompete or poison other life forms. Seaweeds grow mostly in shallow marine waters. Some are used as human food or harvested for useful substances such as agar or fertilizer. The study of marine algae is called phycology or algology.

B. Algae, diverse group of simple, plantlike organisms. Like plants, most algae use the energy of sunlight to make their own food, a process called photosynthesis. However, algae lack the roots, leaves, and other structures typical of true plants. Algae are the most important photosynthesizing organisms on Earth. They capture more of the sun’s energy and produce more oxygen (a byproduct of photosynthesis) than all plants combined. Algae form the foundation of most aquatic food webs, which support an abundance of animals.

Algae vary greatly in size and grow in many diverse habitats. Microscopic algae, called phytoplankton, float or swim in lakes and oceans. Phytoplankton are so small that 1000 individuals could fit on the head of a pin (see Plankton). The largest forms of algae are seaweeds that stretch 100 m (300 ft) from the ocean bottom to the water’s surface. Although most algae grow in fresh water or seawater, they also grow on soil, trees, and animals, and even under or inside porous rocks, such as sandstone and limestone. Algae tolerate a wide range of temperatures and can be found growing in hot springs, on snow banks, or deep within polar ice.

Algae also form mutually beneficial partnerships with other organisms (see Symbiosis). For example, algae live with fungi to form lichens—plantlike or branching growths that form on boulders, cliffs, and tree trunks. Algae called zooxanthellae live inside the cells of reef-building coral. In both cases, the algae provide oxygen and complex nutrients to their partner, and in return they receive protection and simple nutrients. This arrangement enables both partners to survive in conditions that they could not endure alone.

The earliest life-forms on this planet are thought to be early ancestors of cyanobacteria, a type of algae formerly called blue-green algae. Fossilized cyanobacteria have been found in rocks more than 3 billion years old. These early algae formed when there was no oxygen in the atmosphere, and scientists theorize that as the algae photosynthesized, they released oxygen as a byproduct, which eventually accumulated in the atmosphere. Algae were probably the first organisms capable of photosynthesis and, until the appearance of plants on earth, the only photosynthesizers for billions of years.

2. Physical Characteristics

With the exception of the cyanobacteria, algae are eukaryotes—that is, the insides of their cells are organized into separate membrane-wrapped organelles, including a nucleus and mitochondria. An important organelle found in eukaryotic algae is the chloroplast, which contains the light-absorbing pigments responsible for capturing the energy in sunlight during photosynthesis. In most algae the primary pigment is chlorophyll, the same green pigment used in plants. Many algae also contain secondary pigments, including the carotenoids, which are brown or yellow, and the phycobilins, which are red or blue. Secondary pigments give algae their colorful hues.

The cyanobacteria are prokaryotes—that is, relatively simple unicellular organisms lacking a nucleus and other membrane-bound organelles. As their modern name implies, the cyanobacteria have many characteristics that resemble bacteria.

Like plants, most algae have rigid cell walls composed largely of cellulose. An exception is the diatom, whose cell wall is composed primarily of silica, which provides rigidity and also produces elaborately sculpted patterns of grooves that serve as identifying features. Many eukaryotic algae have whiplike appendages called flagella attached to their cell walls. By beating flagella in a rotary movement, these algae are able to move through water with considerable speed. A few algae that are devoid of rigid cell walls are able to protrude one part of the body ahead of the other to crawl on solid surfaces in an amoeba-like fashion.

Algae come in a variety of shapes and forms. The simplest form is the single, self-sufficient cell, such as Euglena, dependent only on sunlight and carbon dioxide and minerals from the water. Numerous one-celled algae may clump together to form a colony. Although these cells are attached to one another, each cell within a colony continues to function independently. Still other algae are multicellular organisms. In the simplest multicellular algae, the cells are joined end to end, forming filaments, both branched and unbranched. More complex structures may be shaped like a small disc, tube, club, or even a tree. The most complex algae have highly specialized cells. Some seaweeds, for instance, have a variety of specialized tissues, including a rootlike holdfast, a stipe, which resembles a plant stalk, and a leaflike blade.

While most algae create their own food through photosynthesis, some are unable to photosynthesize. These algae ingest food from external sources by absorbing simple nutrients through the cell membrane. To absorb more complex nutrients, algae that lack rigid walls are able to engulf food particles and digest them. Some of the algae known as dinoflagellates extend a feeding tube, called a peduncle, to suck in food. Other dinoflagellates use special harpoonlike structures to snare their food. Some algae are parasites, living in or on another organism from which they get their food. Some parasitic red algae live off other red algae, and parasitic dinoflagellates live in the intestines of some marine animals, such as copepods and annelids.

3. Reproduction

Algae reproduce in astoundingly diverse ways. Some reproduce asexually, others use sexual reproduction, and many use both. In asexual reproduction an individual reproduces without combining its genetic material with that from another individual. The simplest form of asexual reproduction is binary fission, in which a unicellular organism simply divides into two new individuals. Some multicellular algae, including Sargassum, reproduce asexually through fragmentation, in which fragments of the parent develop into new individuals. In a similar process called budding, special buds detach from multicellular algae and develop into new individuals, commonly found in Sphacelaria. Many algae produce special cells called spores that are capable of growing into new individuals. If these spores move about using flagella, they are known as zoospores.

In sexual reproduction, genetic material from two individuals is combined. The simplest form of sexual reproduction in algae is conjugation, in which two similar organisms fuse, exchange genetic material, and then break apart. For example, in Spirogyra, which produces both asexually and sexually, two long, unbranched filaments join via conjugation tubes, through which genetic material is exchanged between cells. Most multicellular algae undergo a more complex form of sexual reproduction involving the union of special reproductive cells, called gametes, to form a single cell, known as a zygote.

Many algae incorporate both sexual and asexual modes of reproduction. This is well demonstrated in the life cycle of the alga Chlamydomonas. The mature alga is a single haploid cell—that is, it contains only one set of chromosomes. During asexual reproduction the cell undergoes mitosis, a type of cell division that produces genetically identical offspring. Four daughter cells are created that emerge from the enclosing parent cell as spores. The spores develop into mature haploid cells that are genetically identical to the parent cell.

Certain environmental conditions, such as lack of nutrients or moisture, may trigger the haploid daughter cells to undergo sexual reproduction. Instead of forming into spores, the haploid daughter cells form gametes that have two different mating strains. These two strains are structurally similar and are called plus and minus strains. Opposite mating strains fuse in a process known as isogamy to form a diploid zygote, which contains two sets of chromosomes. After a period of dormancy, the zygote undergoes meiosis, a type of cell division that reduces the genetic content of a cell by half. This cell division produces four genetically unique haploid cells that eventually grow into mature cells.

Some multicellular green algae, such as Ulva, follow a distinct pattern of reproduction called alternation of generations, in which it takes two generations—one that reproduces sexually and one that reproduces asexually—to complete the life cycle. The two mature forms of the algae, alternating between diploid and haploid individuals, are identical in appearance, or isomorphic. The haploid form, called a gametophyte, undergoes mitosis to produce haploid gametes. These gametes unite to form a diploid zygote, which develops into the diploid form called a sporophyte. The sporophyte undergoes meiosis to form haploid spores that, in turn, form gametophytes.

Not all algae that undergo alternation of generations have haploid and diploid forms that look alike. In the life cycle of the seaweed Laminaria, the gametophyte and the sporophyte are distinct in appearance, or heteromorphic. The Laminaria sporophyte appears as long, bladelike structures that grow on rocks just below the water in intertidal zones. The gametophyte is short, with branched filaments.

4. Klasifikasi

Tabel 1. Klasifikasi fitoplankton laut (Parson et al, 1984)

Taksonomi (kelas)

Nama umum

Area yang dominan

Cyanophyceae

Alga biru hijau

Tropik, cosmopolitan

Rhodophyceae

Alga merah

Jarang, Pantai

Bacillariophyceae

Diatom

Seluruh perairan laut, khususnya pantai

Cryptophyceae

Cryptomonad

Cosmopolitan, khususnya pantai

Dinophyceae

Dinoflagellata

Seluruh perairan laut, khususnya daerah tropis

Chrysophyceae

Crysomonad

Silicoflgellata

Jarang, pantai

Kadang-kadang melimpah

Haptophyceae

Coccolithopor

Prymnesiomonad

Lautan (coccolit)

Pantai (prymnesio)

Raphidiophyceae

Chloromonad

Jarang, tetapi kadang-kadang melimpah, payau

Xanthophyceae

Alga kuning hijau

Jarang

Eustigmatophyceae

-

Jarang

Euglenophyceae

Euglenoid

Pantai

Prasinophyceae

Prasionomonad

Seluruh perairan laut

Chlorophyceae

Alga hijau

Volvocales

Jarang , pantai


4. Uses of algae

Seaweed is used as a fertiliserAlgae are used by man in a great many ways. Because many species are aquatic and microscopic, they are cultured in clear tanks or ponds and either harvested or used to treat effluents pumped through the ponds. Algaculture on a large scale is an important type of aquaculture in some places. Certain species are edible; the best known is Palmaria palmata (Linnaeus) O. Kuntze (Rhodymenia palmata (Linnaeus) Kuntze), common name: dulse. This is a red species which is dried and may be bought in the shops in Ireland. It is eaten raw, fresh or dried, or cooked like spinach. Porphyra, common name: purple laver, is also collected and used in a variety of ways (e.g. "laver bread" in the British Isles). In Ireland it is collected and made into a jelly by stewing or boiling. Preparation also involves frying with fat or converting to a pinkish jelly by heating the fronds in a saucepan with a little water and beating with a fork. It is also collected and used in by people of Asian background along most of the coast from California to British Columbia. The Hawaiians and the Maoris of New Zealand also use it. Chondrus crispus, (probably confused with Mastocarpus stellatus), common name: Irish moss, is also used as "carrageen" for the stiffening of milk and dairy products, such as ice-cream. One particular use is in "instant" puddings, sauces and creams. Ulva lactuca, common name: sea lettuce, is used locally in Scotland where it is added to soups or used in salads. Alaria esculenta, common name: dabberlocks, is used either fresh or cooked, in Greenland, Iceland, Scotland and Ireland.

a. Fertiliser
For centuries seaweed has been used as manure: "This kind of ore they often gather and lay in heaps where it heteth and rotteth, and will have a strong and loathsome smell; when being so rotten they cast it on the land, as they do their muck, and thereof springeth good corn, especially barley."[6] There are also commercial uses of algae as agar.

Maerl is still harvested at Falmouth (also extensively in Brittany and western Ireland) and is a popular fertiliser in these days of organic gardening; Blunden et al. (1981)[7] investigated Falmouth maerl and found that L. corallioides predominated down to 6 m and P. calcareum from 6-10 m. Chemical analysis of maerl showed that it contained 32.1% CaCO3 and 3.1% MgCO3 (dry weight).

b. Energy source
Algae can be used to make biodiesel (see algaculture), and by some estimates can produce vastly superior amounts of oil, compared to terrestrial crops grown for the same purpose. Because algae grown to produce biodiesel does not need to meet the requirements of a food crop, it is much cheaper to produce. Also it does not need fresh water or fertilizer (both of which are quite expensive).
Algae can be grown to produce hydrogen. In 1939 a German researcher named Hans Gaffron, while working at the University of Chicago, observed that the algae he was studying, Chlamydomonas reinhardtii (a green-algae), would sometimes switch from the production of oxygen to the production of hydrogen.[1] Gaffron never discovered the cause for this change and for many years other scientists failed in their attempts at its discovery. In the late 1990s professor Anastasios Melis a researcher at the University of California at Berkeley discovered that if the algae culture medium is deprived of sulfur it will switch from the production of oxygen (normal photosynthesis), to the production of hydrogen. He found that the enzyme responsible for this reaction is hydrogenase, but that the hydrogenase lost this function in the presence of oxygen. Melis found that depleting the amount of sulfur available to the algae interrupted its internal oxygen flow, allowing the hydrogenase an environment in which it can react, causing the algae to produce hydrogen. [2] Chlamydomonas moeweesi is also a good strain for the production of hydrogen.
Algae can be grown to produce biomass, which can be burned to produce heat and electricity. [3]

c. Pollution control
Algae are used in wastewater treatment facilities, reducing the need for more dangerous chemicals.
Algae can be used to capture fertilizers in runoff from farms. If this algae is then harvested, it itself can be used as fertilizer.
Algae bioreactors are used by some powerplants to reduce CO2 emissions. [4] The CO2 can be pumped into a pond, or some kind of tank, on which the algae feed. Alternatively, the bioreactor can be installed directly on top of a smokestack. This techology has been pioneered by Massachusetts-based GreenFuelTechnologies.[5].

d. Nutritional value of algae
Algae is commercially cultivated as a nutritional supplement. One of the most popular microalgal species is Spirulina (Arthrospira platensis), which is a Cyanobacteria (known as blue-green algae), and has been hailed by some as a superfood. [6] Other algal species cultivated for their nutritional value include; Chlorella (a green algae), and Dunaliella (Dunaliella salina), which is high in beta-carotene and is used in vitamin C supplements.
Algae is sometimes also used as a food, as in the Chinese "vegetable" known as fat choy (which is actually a cyanobacterium).
The oil from some algae have high levels of unsaturated fatty acids. Arachidonic acid(a polyunsaturated fatty acid), is very high in Parietochloris incisa, (a green algae) where it reaches up to 47% of the triglyceride pool (Bigogno C et al. Phytochemistry 2002, 60, 497). [7] [8]
The natural pigments produced by algae can be used as an alternative to chemical dyes and coloring agents. [9] Many of the paper products used today are not recyclable because of the chemical inks that they use, paper recyclers have found that inks made from algae are much easier to break down. There is also much interest in the food industry into replacing the coloring agents that are currently used with coloring derived from algal pigments.


http://en.wikipedia.org/wiki/Algae#Introduction